Wednesday, December 21, 2022
Agri Food Tech News
SUBSCRIBE
  • Home
  • AgriTech
  • FoodTech
  • Farming
  • Organic Farming
  • Machinery
  • Markets
  • Food Safety
  • Fertilizers
  • Lifestyle
No Result
View All Result
Agri Food Tech News
  • Home
  • AgriTech
  • FoodTech
  • Farming
  • Organic Farming
  • Machinery
  • Markets
  • Food Safety
  • Fertilizers
  • Lifestyle
No Result
View All Result
Agri Food Tech News
No Result
View All Result

Producing nitrogen fertilizer without carbon emissions

by agrifood
December 21, 2022
in AgriTech
Reading Time: 4 mins read
A A
0
Home AgriTech
Share on FacebookShare on Twitter


Most large-scale agricultural operations are possible only if the soil is fertilized with nitrogen, phosphorus, and potassium. While phosphorus and potassium can be mined as salts, nitrogen fertilizer has to be produced laboriously from nitrogen in the air and hydrogen. And, the production of hydrogen is highly energy-intensive, currently requiring large quantities of natural gas or — as in China — coal. In addition to its carbon footprint, nitrogen fertilizer production is vulnerable to price shocks in the fossil fuels markets.

Paolo Gabrielli, the senior scientist at the Laboratory of Reliability and Risk Engineering at ETH Zurich, has collaborated with Lorenzo Rosa, principal investigator at Carnegie Institution for Science at Stanford, to investigate various carbon-neutral production methods for nitrogen fertilizer.

In a study published in the journal Environmental Research Letters, the two researchers conclude that a transition in nitrogen production is possible and that such a transition may also increase food security. However, alternative production methods have advantages and disadvantages. Specifically, the two researchers examined three alternatives:

  • Producing the necessary hydrogen using fossil fuels as in the business-​as-usual, only instead of emitting the greenhouse gas CO2 into the atmosphere, it is captured in the production plants and permanently stored underground (carbon capture and storage, CSS). This requires not only an infrastructure for capturing, transporting and storing the CO2 but also correspondingly more energy. Despite this, it is a comparatively efficient production method. However, it does nothing to reduce dependence on fossil fuels.
  • Electrifying fertilizer production by using water electrolysis to produce the hydrogen. This requires averagely 25 times as much energy as today’s production method using natural gas, so it would take huge amounts of electricity from carbon-​neutral sources. For countries with an abundance of solar or wind energy, this might be an appealing approach. However, given plans to electrify other sectors of the economy in the name of climate action, it might lead to competition for sustainable electricity.
  • Synthesizing the hydrogen for fertilizer production from biomass. Since it requires a lot of arable land and water, ironically this production method competes with food production. But the study’s authors point out that it makes sense if the feedstock is waste biomass — for example, crop residues

The scientists state that the key to success is likely to be a combination of all these approaches depending on the country and on specific local conditions and available resources.


Food security implications

In the study, the scientists also sought to identify the countries of the world in which food security is currently particularly at risk owing to their dependence on imports of nitrogen or natural gas. The following countries are particularly vulnerable to price shocks in the natural gas and nitrogen markets: India, Brazil, China, France, Turkey, and Germany.

Decarbonizing fertilizer production would in many cases reduce this vulnerability and increase food security. At the very least, electrification via renewables or the use of biomass would reduce the dependence on natural gas imports.

However, the researchers put this point into perspective: all carbon-​neutral methods of producing nitrogen fertilizer are more energy intensive than the current method of using fossil fuels. In other words, they are still vulnerable to certain price shocks — not on natural gas markets directly, but perhaps on electricity markets.

Image by Tinatin, Shutterstock

Nitrogen producers facing change

Decarbonization is likely to change the line-​up of countries that produce nitrogen fertilizer, the scientists point out in their study. As things stand, the largest nitrogen exporting nations are Russia, China, Egypt, Qatar, and Saudi Arabia. Except for China, which has to import natural gas, all these countries can draw on their own natural gas reserves. In the future, the countries that are likely to benefit from decarbonization are those that generate a lot of solar and wind power and also have sufficient reserves of land and water, such as Canada and the United States.

“There’s no getting around the fact that we need to make agricultural demand for nitrogen more sustainable in the future, both for meeting climate targets and for food security reasons,” Gabrielli said.

The war in Ukraine is affecting the global food market not only because the country normally exports a lot of grain, but also because the conflict has driven natural gas prices higher. This in turn has caused prices for nitrogen fertilizers to rise. Even so, some fertilizer producers are known to have ceased production, at least temporarily, because the exorbitant cost of gas makes production uneconomical for them.

Sponsored Content on AGDaily

(function(d, s, id) {
var js, fjs = d.getElementsByTagName(s)[0];
if (d.getElementById(id)) return;
js = d.createElement(s); js.id = id;
js.src = “//connect.facebook.net/en_US/sdk.js#xfbml=1&version=v2.8&appId=320025038337187”;
fjs.parentNode.insertBefore(js, fjs);
}(document, ‘script’, ‘facebook-jssdk’));



Source link

Share this:

  • Click to share on Twitter (Opens in new window)
  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • More
  • Click to share on Reddit (Opens in new window)
  • Click to share on Tumblr (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Pocket (Opens in new window)
  • Click to share on Telegram (Opens in new window)
  • Click to share on WhatsApp (Opens in new window)

Like this:

Like Loading...
Tags: CarbonemissionsFertilizerNitrogenproducing
Share30Tweet19
Previous Post

Podcast: Into the Wasteland, part 3: Buried in Europe’s recycling

Next Post

FI Live Replay - Food Tech Trends at CES 2023: An Inside Look

Recommended For You

Fresno Equipment Prepares for the Future with Entry into Autonomy Arena

by agrifood
December 21, 2022
0

Jimmy Perry never imagined his career would evolve the way it did when he started working in sales for Fresno Equipment 18 years ago. His outlook changed when...

Read more

Top-10 New Product Winner Awarded to GUSS Automation

by agrifood
December 20, 2022
0

GUSS Automation is the recipient of their third Top-10 New Product award from the International Agri-Center and will be showcased at the World Ag Expo February 14 –...

Read more

John Deere Highlights Autonomy Plan

by agrifood
December 20, 2022
0

In the December 4, 2022 edition of Upstream Ag Insights, Shane Thomas highlighted a couple of interesting comments in the John Deere investor call. Deere has emphasized that it will be...

Read more

UAE & Egypt will face a significant shortage of skilled labor for climate-smart farms. Here’s why that’s important.

by agrifood
December 19, 2022
0

Editor’s Note: Henry Gordon-Smith is CEO at Agritecture, an urban farming consultancy and software platform based in New York, US. Here he writes about extensive research done by his...

Read more

Maarten Vandecruys talks wheat on Mars & challenging CEA status quo

by agrifood
December 17, 2022
0

Urban Crop Solutions was one of indoor farming’s earliest companies to choose between being a grower and being a tech company. Co-founders Maarten Vandecruys and Frederic Bulcaen established...

Read more
Next Post

FI Live Replay - Food Tech Trends at CES 2023: An Inside Look

2023 National Ag Day essay contest announced

LATEST UPDATES

Food Safety

| Food Engineering

by agrifood
December 21, 2022
0

| Food Engineering This website requires certain cookies to work and uses other cookies to help you have the best...

Tractor Supply grants wish of 9-year-old with cancer

December 21, 2022

Q&A with Sharad Chandra Adhikary

December 21, 2022

Congress giving FDA $41 million more for its troubled food safety activities

December 21, 2022

Fresno Equipment Prepares for the Future with Entry into Autonomy Arena

December 21, 2022

Fuel thefts doubled in 2022, warns NFU Mutual

December 21, 2022

Get the free newsletter

Browse by Category

  • AgriTech
  • Farming
  • Fertilizers
  • Food Safety
  • FoodTech
  • Lifestyle
  • Machinery
  • Markets
  • Organic Farming
  • Uncategorized
Agri Food Tech News

Agri FoodTech News provides in-depth journalism and insight into the most impactful news and updates about shaping the business of Agriculture

CATEGORIES

  • AgriTech
  • Farming
  • Fertilizers
  • Food Safety
  • FoodTech
  • Lifestyle
  • Machinery
  • Markets
  • Organic Farming
  • Uncategorized

RECENT UPDATES

  • | Food Engineering
  • Tractor Supply grants wish of 9-year-old with cancer
  • Q&A with Sharad Chandra Adhikary
  • Disclaimer
  • Privacy Policy
  • DMCA
  • Cookie Privacy Policy
  • Terms and Conditions
  • Contact us

Copyright © 2022 - Agri FoodTech News .
Agri FoodTech News is not responsible for the content of external sites.

No Result
View All Result
  • Home
  • AgriTech
  • FoodTech
  • Farming
  • Organic Farming
  • Machinery
  • Markets
  • Food Safety
  • Fertilizers
  • Lifestyle

Copyright © 2022 - Agri FoodTech News .
Agri FoodTech News is not responsible for the content of external sites.

%d bloggers like this: