Wednesday, July 20, 2022
Agri Food Tech News
SUBSCRIBE
  • Home
  • AgriTech
  • FoodTech
  • Farming
  • Organic Farming
  • Machinery
  • Markets
  • Food Safety
  • Fertilizers
  • Lifestyle
No Result
View All Result
Agri Food Tech News
  • Home
  • AgriTech
  • FoodTech
  • Farming
  • Organic Farming
  • Machinery
  • Markets
  • Food Safety
  • Fertilizers
  • Lifestyle
No Result
View All Result
Agri Food Tech News
No Result
View All Result

Managing phage therapy to help save lives

by agrifood
July 20, 2022
in AgriTech
Reading Time: 7 mins read
A A
0
Home AgriTech
Share on FacebookShare on Twitter


Scientists with the Texas A&M College of Agriculture and Life Sciences were among those providing the biochemical tools needed to help save a man’s life through a unique emergency intervention in 2016.

Two men and two women, personnel from the Center for Phage Technology who were involved in recent study, stand in a lab setting
Texas A&M University Center for Phage Technology study contributors, left to right: James Clark, research specialist; Tram Le, technical laboratory coordinator; Mei Liu, Ph.D., program director; and Jason Gill, Ph.D., professor and associate director. Adriana Hernandez-Morales and Ryland Young, Ph.D., not in photo, also contributed to the study. (Photo courtesy Center for Phage Technology.)

Now those Center for Phage Technology scientists in the Texas A&M Department of Biochemistry and Biophysics, Bryan-College Station, have completed a study about that treatment as well as other opportunities for phage therapy.

Their study, “Comparative genomics of Acinetobacter baumannii and therapeutic bacteriophages from a patient undergoing phage therapy,” was published recently in the scientific journal Nature Communications.

The threat of antimicrobial resistance has become a worldwide concern, with the World Health Organization estimating at least 50 million people per year worldwide could die from it by 2050. Center for Phage Technology scientists believe phage therapeutics can be used to fight these resistant bacterial infections.

The premiere case involved phage center scientists working in collaboration with other scientists and physicians at University of California San Diego, UC San Diego, School of Medicine and the U.S. Navy Medical Research Center – Biological Defense Research Directorate. Together, they worked to identify phages and determine a treatment plan for Tom Patterson, a professor of psychiatry at the UC San Diego School of Medicine, who was infected by a deadly pathogen while vacationing in Egypt.

About phages

Bacteriophages, or phages, are viruses that can infect and kill bacteria without having a negative effect on human or animal cells. Phages can be used alone or in combination with antibiotics or other drugs to treat bacterial infections.

“Bacteriophage therapy is an emerging field that many researchers think could yield novel ways to fight antimicrobial-resistant bacteria,” said Mei Liu, Ph.D., program director at the Center for Phage Technology and a primary investigator for the study. “At the center, we are interested in the applications of phage therapeutics to fight multidrug-resistant bacterial infections.”

She said the center’s work is aided by the team’s deep knowledge of phage biology, particularly in the areas of phage lysis and phage genomics.

Patterson’s predicament

In 2015, while on vacation in Egypt during the Thanksgiving holiday, Patterson began to experience severe abdominal pain, nausea and vomiting. Local doctors diagnosed him with pancreatitis and treated him accordingly, but the treatments didn’t work and his condition worsened.

He was later transported to Germany, where doctors found fluid around his pancreas and took cultures from the fluid’s contents. The cultures showed he had been infected with a multidrug-resistant strain of Acinetobacter baumannii, an often-deadly pathogen found in hospital settings and in the Middle East. The same pathogen was also identified in many injured U.S. military members returning home after serving in that part of the world.

In Germany, Patterson was treated with a combination of antibiotics, and his condition improved to a degree where he could be airlifted to the intensive care unit at Thornton Hospital in the UC San Diego Health academic health system. There, however, the medical team discovered that the bacteria had become resistant to antibiotics.

Patterson in hospital bed. Dr. Schooley standing at left Patterson in hospital bed. Dr. Schooley standing at left
Tom Patterson, in hospital bed, received phage therapy from Robert “Chip” Schooley, MD, left, of UC San Diego Health. (Courtesy photo used with permission of Dr. Tom Patterson)

A “compassionate use” exemption for phage therapy was requested by Dr. Robert “Chip” Schooley, the UC San Diego physician treating Patterson. He was given rapid approval from the U.S. Food and Drug Administration, FDA, to proceed.

Shortly after the phage treatment began, Patterson awakened from a months-long coma. After a long recovery, his health improved greatly, and he was able to return to life as it was before the infection.

Acinetobacter baumannii and other resistant pathogens

Acinetobacter baumannii is recognized as a significant bacterial pathogen in health care-associated infections. A Centers for Disease Control and Prevention report from 2019 stated that antibiotic-resistant pathogens cause more than 2.8 million infections and more than 35,000 deaths annually in the U.S.

Several characteristics of the pathogen that infected Patterson impacted the treatment regimens and outcomes, said Ry Young, Ph.D., director of the Center for Phage Technology.

Patterson’s wife, Steffanie Strathdee, Ph.D., associate dean of global health sciences with UC San Diego School of Medicine and an infectious disease epidemiologist, had contacted Young to seek his help in finding a treatment for her husband once she became aware of Young’s extensive work with phages.

Young and his lab team took up the challenge and worked almost nonstop for three months to help find a solution.

Illustration of a bacteriophage Illustration of a bacteriophage
Phages are viruses that can infect and kill bacteria without affecting human or animal cells. Phage therapy was used extensively in the early 20th century prior to the use of antibiotics. (Stock illustration)

“Cases of resistant infections are becoming more prevalent and very few new antibiotics are available, so the use of bacteriophages to treat or control multidrug-resistant infections is being reconsidered as an alternative strategy,” Young said. “Phage therapy is actually a very old concept, having been used extensively in the early 20th century during the pre-antibiotic era.”

Phage treatment also has been successful in several more recent case studies involving multidrug-resistant strains of P. aeruginosa, Staphylococcus aureus and Escherichia coli bacteria.

“Phages had been sidelined as a potential treatment for bacterial infections when antibiotics came into wide use in the U.S.,” Liu said. “But in other areas of the world, particularly where antibiotics were not immediately available, researchers and doctors have continued developing and practicing phage therapy. Now we are seeing more instances of how phage therapy can be used when antibiotics alone are not sufficient to treat bacterial infections.”

Lessons from the Patterson case

Jason Gill, Ph.D., professor in the Texas A&M Department of Animal Science and associate director of the Center for Phage Technology, said while the Patterson case and similar case studies treating multidrug-resistant bacteria have been encouraging in terms of clinical outcome, a more in-depth examination of the phage-host interaction during treatment and its implications is needed.

“The recent study showed that resistance to the therapeutic phages emerged early, and the acquisition of new mobile elements by the bacteria can occur during treatment,” said Gill, a corresponding author of the study. “It is important to have a thorough genomic analysis of phages prior to phage treatment in order to maximize treatment success and minimize both effort and resources. There is also a need for conventional experimental testing for phage host range and growth characteristics.”

Gill also noted the use of well-characterized phages in a phage cocktail can avoid redundancy and significantly save time and effort in phage production and purification. Eight of the nine phages used for treatment in the Patterson case turned out to be closely related, and this knowledge could have been used to streamline the process if the investigators had known this when assembling the treatment.

“The Patterson case has done a lot to increase awareness of phage therapy and its effectiveness as an alternative therapy for multidrug-resistant pathogenic strains,” Liu said. “The success of phage therapy in that case and other cases has brought wider attention to its use and efficacy.”

Liu added that the Center for Phage Technology is focusing on developing the technology, standardizing optimal delivery procedures and securing necessary approvals from regulatory agencies to make phage treatment available to patients in the U.S.

“Much of what we did in the Patterson case was unconventional due to the context of phage therapy at that time,” Liu said. “But there have been many advances in genomic sequencing and other technologies since then. Today, it would be a much quicker and more efficient process to develop and implement phage therapy if there was another case similar to Patterson’s.”

-30-



Source link

Share this:

  • Click to share on Twitter (Opens in new window)
  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • More
  • Click to share on Reddit (Opens in new window)
  • Click to share on Tumblr (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Pocket (Opens in new window)
  • Click to share on Telegram (Opens in new window)
  • Click to share on WhatsApp (Opens in new window)

Like this:

Like Loading...
Tags: LivesManagingphageSavetherapy
Share30Tweet19
Previous Post

More honey recalled over undeclared ingredient to treat ED in product

Recommended For You

Europe’s agrifood sector is building a pipeline of climate tech startups

by agrifood
July 20, 2022
0

Data Snapshot is a regular AFN feature analyzing agrifoodtech market investment data provided by our parent company, AgFunder. Click here for more research from AgFunder and sign up to our newsletters to receive...

Read more

MycoWorks unveils mycelium alt-leather hat line with Nick Fouquet

by agrifood
July 19, 2022
0

Disclosure: AFN’s parent company, AgFunder, is an investor in MycoWorks. MycoWorks, a US startup developing alternative biomaterials based on mycelium, has launched a line of hats made from...

Read more

ProducePay & ALLCOT unveil carbon offset program for produce growers

by agrifood
July 19, 2022
0

Online ag marketplace ProducePay has teamed up with climate strategies provider ALLCOT to launch what the companies say is “the first-of-its-kind” carbon-offset program for produce growers. Through the...

Read more

Melon Farmers Find New Buyers Through Agriculture E-Commerce

by agrifood
July 19, 2022
0

Melon farmers in China's Shandong province are finding new buyers for their cantaloupes through agriculture e-commerce platform Pinduoduo.

Read more

Sustainability is here to stay. Two ag agencies are stepping up

by agrifood
July 18, 2022
0

Amid the ever-evolving challenges of providing a consumer-friendly, sustainable food supply, farmers and food companies often face different pressures while working towards the same end goals. To better...

Read more

LATEST UPDATES

AgriTech

Managing phage therapy to help save lives

by agrifood
July 20, 2022
0

Scientists with the Texas A&M College of Agriculture and Life Sciences were among those providing the biochemical tools needed to...

More honey recalled over undeclared ingredient to treat ED in product

July 20, 2022

Cotton Focus of Pakistani Trade Mission

July 20, 2022

Home Chef opens new facility to support growing customer base

July 20, 2022

First-of-its-kind freshwater mangroves discovered in Brazil’s Amazon Delta

July 20, 2022

Growing Resistance: How Black-Led Organizations Are Feeding Louisville

July 20, 2022

Get the free newsletter

Browse by Category

  • AgriTech
  • Farming
  • Fertilizers
  • Food Safety
  • FoodTech
  • Lifestyle
  • Machinery
  • Markets
  • Organic Farming
  • Uncategorized
Agri Food Tech News

Agri FoodTech News provides in-depth journalism and insight into the most impactful news and updates about shaping the business of Agriculture

CATEGORIES

  • AgriTech
  • Farming
  • Fertilizers
  • Food Safety
  • FoodTech
  • Lifestyle
  • Machinery
  • Markets
  • Organic Farming
  • Uncategorized

RECENT UPDATES

  • Managing phage therapy to help save lives
  • More honey recalled over undeclared ingredient to treat ED in product
  • Cotton Focus of Pakistani Trade Mission
  • Disclaimer
  • Privacy Policy
  • DMCA
  • Cookie Privacy Policy
  • Terms and Conditions
  • Contact us

Copyright © 2022 - Agri FoodTech News .
Agri FoodTech News is not responsible for the content of external sites.

No Result
View All Result
  • Home
  • AgriTech
  • FoodTech
  • Farming
  • Organic Farming
  • Machinery
  • Markets
  • Food Safety
  • Fertilizers
  • Lifestyle

Copyright © 2022 - Agri FoodTech News .
Agri FoodTech News is not responsible for the content of external sites.

%d bloggers like this: